Adaptive transfer of T cell receptor (TCR) gene-engineered T cells can induce durable anti-cancer responses. Post-infection cytokine release syndrome (CRS) has been associated with clinical side effects with CAR-T cells. NY-ESO-1 is a novel gene therapy approach using genetically modified T cells to target a tumor-specific antigen.

BACKGROUND

Adaptive transfer of T cell receptor (TCR) gene-engineered T cells can induce durable anti-cancer responses. Post-infection cytokine release syndrome (CRS) has been associated with clinical side effects with CAR-T cells. NY-ESO-1 is a novel gene therapy approach using genetically modified T cells to target a tumor-specific antigen.

Trial Design and Key Inclusion

- **Cohort A**: Single treatment of TBI-1301
- **Cohort B**: Retreatment for patients who have persisting disease following NY-ESO-1 TBI-1301
- **Cohort C**: Double treatment of TBI-1301 on Days 0 and 14

Clinical Results

- **CLINICAL RESULTS**
 - **Study Days**
 - **Cohort A:** Single treatment of TBI-1301
 - **Cohort B:** Retreatment for patients who have persisting disease following NY-ESO-1 TBI-1301
 - **Cohort C:** Double treatment of TBI-1301 on Days 0 and 14

Biomarker Correlates

- **Detection of NY-ESO1-specific CD4 and CD8 T cells in peripheral blood**
 - **Percentage of NY-ESO1-specific CD4 and CD8 T cells**
 - **Clinical significance**

Conclusion

- **Repeated infusion of TBI-1301 is well tolerated and induces clinical responses in HA-0.023+ patients with NY-ESO-1+ tumors**
- **Addition of fludarabine may contribute to longer persistence of NY-ESO-1 TCR-T cells**
- **Further characterization of long persisting TBI-1301 cells is ongoing**

Abstract Text

**Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University of Toronto, **Takauro Bio Inc, Japan

NCT02869217

marcus.butler@uhn.ca