Abstract ID 3099

A PHASE I TRIAL OF INTRATUMORAL ADMINISTRATION OF HF10 IN PATIENTS WITH REFRACTORY SUPERFICIAL CANCER: IMMUNE CORRELATES OF VIRUS INJECTION

Neil Gildener-Leapman¹, Neil Gross⁴, John T. Vetto⁴, James Ohr¹, Athanassios Argiris¹, Robert H.I. Andtbacka⁶, Russell Smith⁵, Sanjay Goel⁷, Richard S. Ungerleider⁸, Maki Tanaka⁹, Yukihiro Nishiyama¹⁰, Robert L. Ferris^{1*}

¹University of Pittsburgh School of Medicine, Pittsburgh, PA; ²Mary Crowley Cancer Research Centers, Dallas, TX; ³Texas Oncology, P.A., Dallas, TX; ⁴Oregon Health and Science University, Portland, OR; ⁵University of Nebraska Medical Center, Omaha, NE; ⁶Huntsman Cancer Institute, Salt Lake City, UT; ⁷Albert Einstein Cancer Center, New York, NY; ⁸Theradex[®], Princeton, NJ; ⁹TAKARA BIO INC., Shiga, Japan; ¹⁰Nagoya University Graduate School of Medicine, Nagoya, Japan; *Corresponding Author

BACKGROUND

- HF10 is a naturally mutated strain of herpes simplex virus I (HSV-1)
- HF10 is replication-competent and exhibits attenuated neuro-invasiveness due to several genomic deletions and insertions
- In vivo oncolytic activity has been demonstrated in various solid tumor models.
- HF10 has also demonstrated systemic anti-tumor activity via activation of tumor-immunity.
- HF10 intratumoral treatment has been well-tolerated in human studies conducted in Japan

STUDY OBJECTIVES

- Assess safety and determine recommended dose for further studies
- Characterize change in HF10 viral replication in body fluids
- Assess anti-tumor activity and intratumoral viral replication
- Evaluate antitumor lymphocyte response and identify serum biomarkers of antitumor activity

STUDY DESIGN

- Open-label, multi-center dose escalation study evaluating both single and repeat intratumoral dosing with HF10 injection
 Study has a "3 + 3" design with a 4-dose escalation scheme
- Starting dose of HF10 in Stage I is $1 \times 10^5 \, \text{TCID}_{50}/\text{dose}$ with incremental dose escalations of $3 \times 10^5 \, \text{TCID}_{50}/\text{dose}$, $1 \times 10^6 \, \text{TCID}_{50}/\text{dose}$ and $1 \times 10^7 \, \text{TCID}_{50}/\text{dose}$
- Stage II is evaluating multiple dosing at 1×10^6 TCID₅₀/dose and 1×10^7 TCID₅₀/dose (Figure 1)

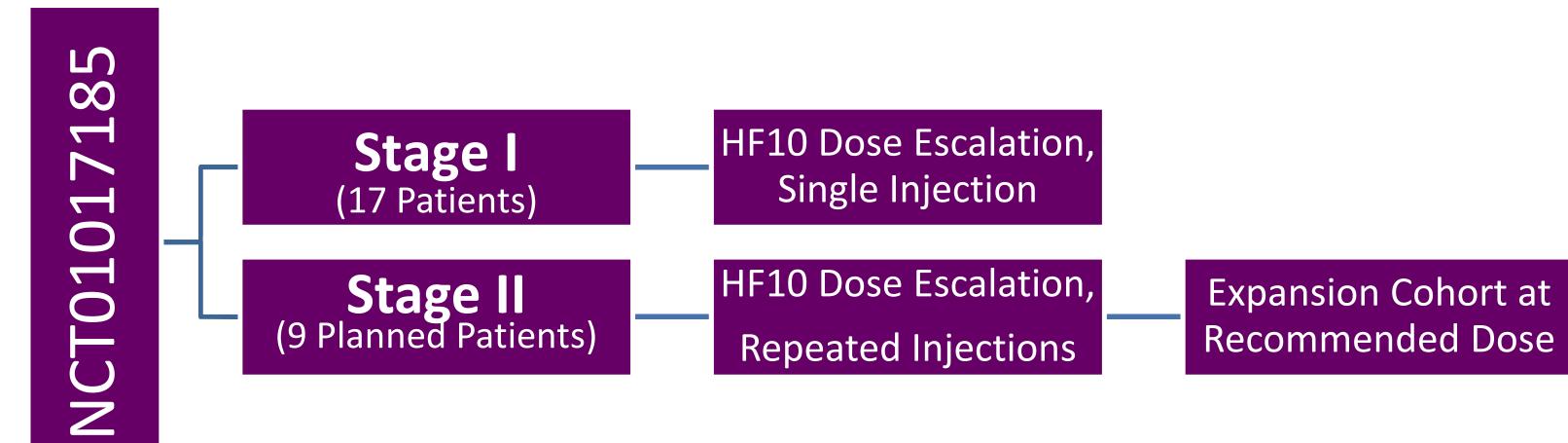


Figure 1: Treatment Arms

METHODS

Key Inclusion Criteria

- Histologically-confirmed solid tumors that have failed standard therapies
- Tumor is accessible for injection and measurement
- ECOG performance status of 0, 1, or 2

Key Exclusion Criteria

- Bleeding diathesis

- Target tumor within 2cm of major vessels

EVALUATION CRITERIA

Safety

Adverse events, vital signs, ECG, laboratories, physical exam

Viral Detection

- PCR for HF10 in blood, saliva, urine Days 1-5, 8, 15, 22 after each injection

Efficacy

- RECIST 1.0 for overall tumor response, modified RECIST 1.0 for evaluation of target tumor response

Correlative Research

- Optional tumor biopsies in Stage I, mandatory in Stage II
- Blood collection at baseline and 2 weeks post each injection

RESULTS

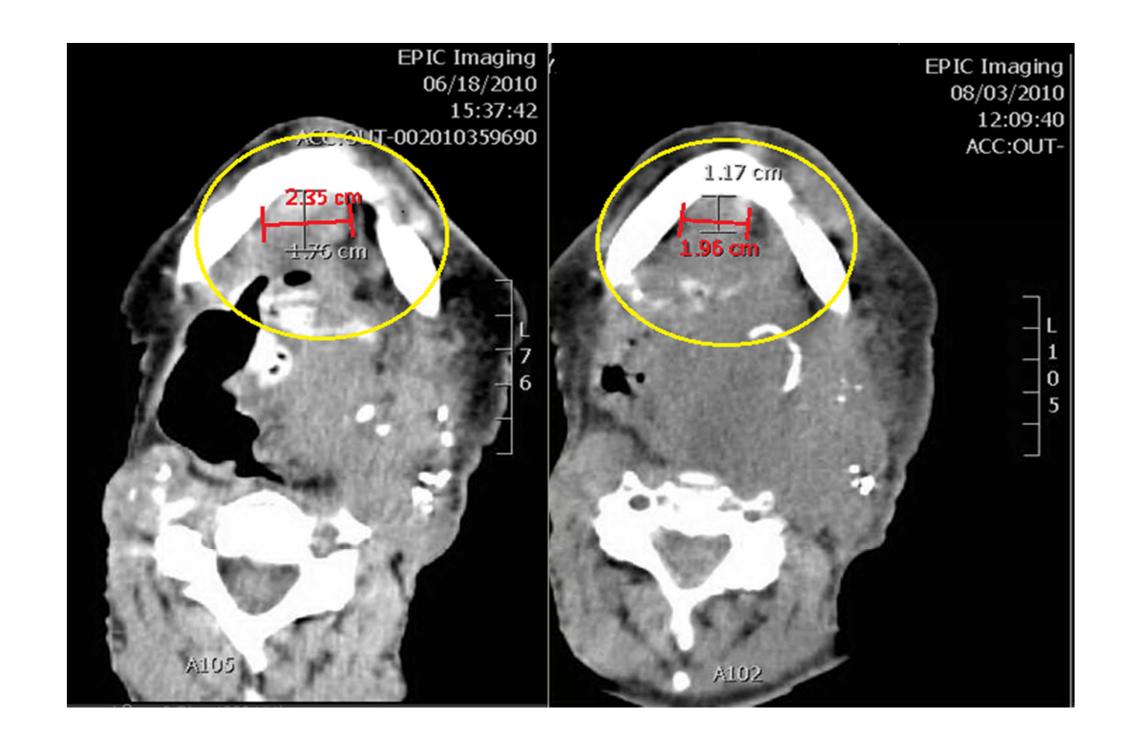
A total of 21 patients have been enrolled to date, of which 19 patients with various tumor types have been treated (Table 1):
 Stage I

Stage II	
Cohort 2 (3 x 10^5 TCID ₅₀), n= 4	Cohort 4 (1 x 10^7 TCID ₅₀), n= 3
Cohort 1 (1 x 10^5 TCID ₅₀), n= 5	Cohort 3 (1 x 10^6 TCID ₅₀), n= 4

Cohort 1 (1 x 10^6 TCID₅₀), n= 3 Cohort 2 (1 x 10^7 TCID₅₀), n=1

- Of 16 efficacy evaluable patients, 9 achieved stable disease (Table 2), (Figure 2)
- 13 have experienced treatment-emergent adverse events (Table 3)
- No dose limiting toxicities nor any Serious Adverse Events related to HF10 therapy were observed
- One HSV-1 seronegative patient has been treated in Stage II

Table 1: Tumor Types Table 1: Tumor Name (1971)


Tumor Type	N (Efficacy Evaluable)	N (%)
Stage 1	15	
Head & Neck		9 (60%)
Melanoma		4 (27%)
Sarcoma		1 (6%)
Colorectal		1 (6%)
Stage 2	4	
Melanoma		2 (50%)
Head & Neck		2 (50%)
	_	

Head & Neck		2 (50%)			
Table 2: Tumor Response					
Response	N (Efficacy Evaluable)	N (%)			
Stage 1	13				
Progressive Disease		7 (54%)			
Stable Disease		6 (46%)			
Stage 2	3				
Progressive Disease		0 (0%)			
Stable Disease		3 (100%			

Table 3: Treatment-Emergent Adverse Events Reported by ≥2 Patients

Treatment Emergent Adverse Event (TEAE)	N (%)
Safety Evaluable Patients	15
Number of Patients with TEAEs	13 (86.7%)
Chills	2 (13.3%)
Fatigue	2 (13.3%)
Constipation	2 (13.3%)
Nausea	2 (13.3%)
Tongue edema	2 (13.3%)
Haemoglobin decreased	2 (13.3%)
Weight decreased	2 (13.3%)
Hypokalemia	2 (13.3%)
Anxiety	2 (13.3%)

Figure 2: SCCHN Lesion Pre- and Post-HF10 Injection (Anterior Floor of Mouth, Patient 001-01-0002.)

(Baseline) (Day 43)
Patient demonstrated a 20% decrease in the longest diameter

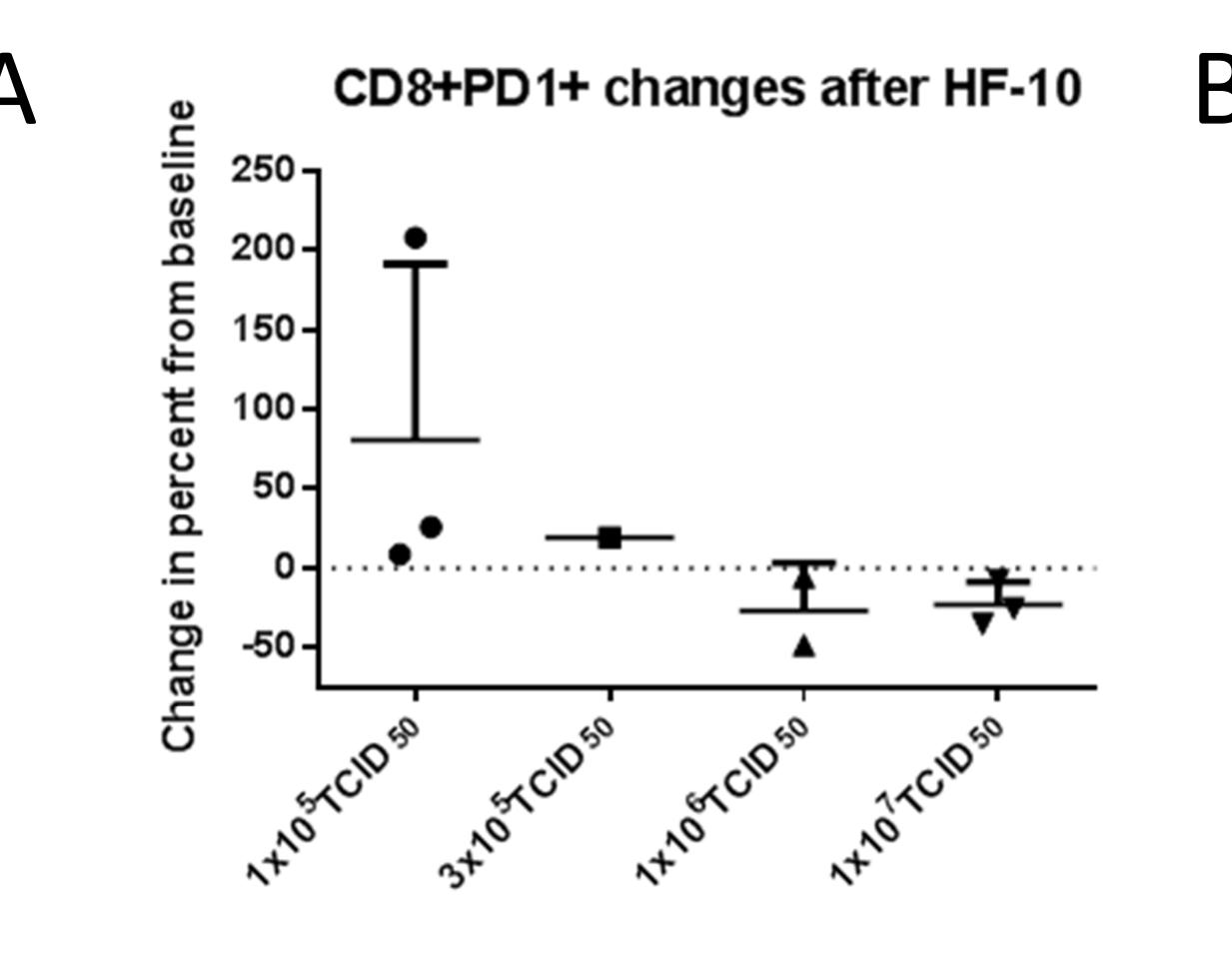
CORRELATIVE STUDY METHODS

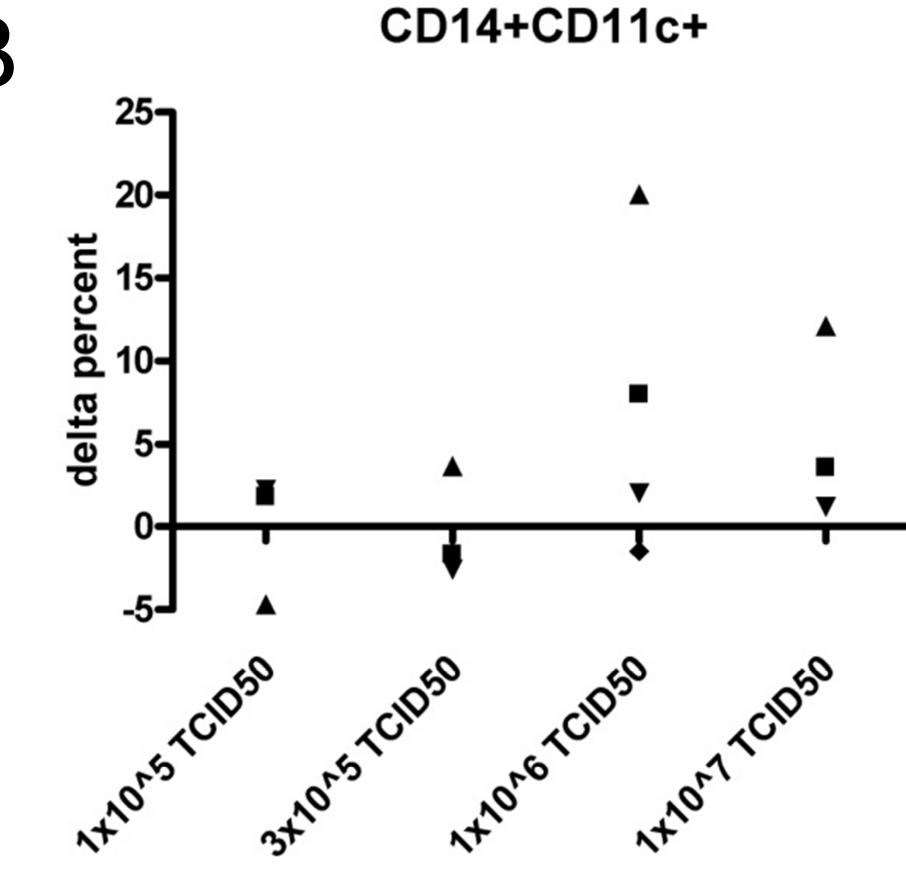
- Peripheral blood from 13 patients treated in Stage I drawn at baseline prior to HF10 administration and post-injection Day 15
- Multicolor flow cytometry performed on patient lymphocytes using antibodies for CD3, CD4, CD8, CCR7, CD45RA, TIM3, PD1, CTLA-4, CD56, CD25, CD11c, CD14, TGF-beta (LAP), and Foxp3, as well as fixable viability dye (ebioscience) to exclude dead cells
- Luminex 30-plex assay performed on patient serum according to manufacturer's specifications
- Statistical analysis of Luminex data (Wilcoxon Signed Rank test) and flow cytometry data (student's t-test) performed using GraphPad Prism software

CORRELATIVE STUDY RESULTS

Peripheral blood lymphocytes

of the injected lesion


- CD8+PD1+ population serially decreased with increasing HF10 dose; changes were significant when the two highest and lowest dose groups were pooled and compared (p=0.023) (Figure 3A)
- CD14+CD11c+ population increased with increasing HF10 dose (p=0.063) (Figure 3B)


Peripheral blood cytokine profile

- 29 of 30 cytokines analyzed via Luminex found to have no significant changes with HF10 injection therapy (Table 4)
- IL-8 increased in all patients post-injection (p=0.0078) (Figure 4)

Patients 10 and 11 had large increases in CD14+CD11c+ population with a concurrent increase in IL-8.

Figure 3: Dose Response of CD8+PD1+ (A) and CD14+CD11c+ (B) Peripheral Blood Lymphocyte Populations Pre- and 15 Day Post-HF10 Injection

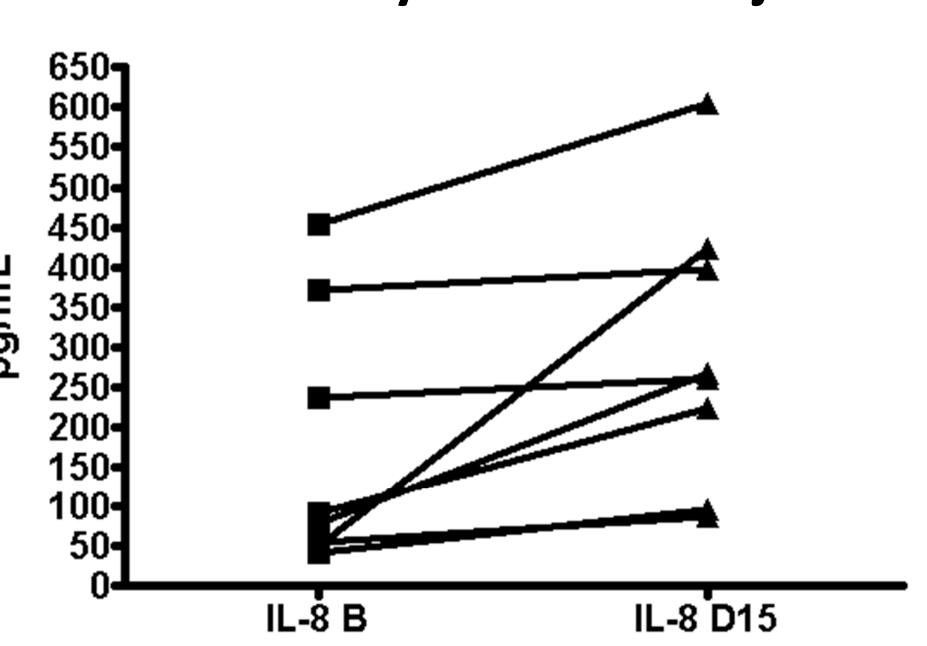


Table 4: Luminex Analyte Summary

Average Pre | Average Post | P-value

Analyte	Treatment	Treatment	
	pg/mL	pg/mL	
IL-1B	201	244	NS
IL-2	2023	3604	NS
IL-4	4960	4191	NS
IL-5	355	250	NS
IL-6	521	476	NS
IL-7	461	564	NS
IL-8	173	295	*0.0078
IFN-α	1375	1149	NS
GM-CSF	ND	ND	NS
IFN-γ	ND	ND	NS
TNF-α	127	106	NS
IL-12 p40/p70	1096	1083	NS
IL-13	488	426	NS
IL-15	1174	1077	NS
IL-17	79	ND	NS
MCP-1	1677	1766	NS
MIP-1a	5302	2665	NS
MIP-1b	126	131	NS
Eotaxin	164	189	NS
Rantes	4527	5134	NS
IP-10	47	51	NS
MIG	214	229	NS
IL-2R	853	831	NS
IL-1RA	380	408	NS
EGF	152	108	NS
FGF-b	129	72	NS
G-CSF	142	140	NS
HGF	657	840	NS
VEGF	7	5	NS
IL-10	ND	ND	NS

Figure 4: IL-8 Concentration in Peripheral Blood Pre- and 15 Day Post-HF10 Injection

CONCLUSIONS

- Treatment with intratumorally-injected HF10 has been well tolerated in multiple types of solid tumor malignancies and in patients who are both naïve or who have had previous exposure to HSV-1
- There appears to be generalized IL-8 related inflammatory response to treatment along with increased peripheral blood monocytes. Patients 10 and 11 responded strongly along both of these axes, though this did not correlate with clinical response.
- Decreased CD8+PD1+ cells may indicate a shift towards a nonexhausted functional CTL phenotype, or homing of outbound PD1+ cells to the injected tumor
- Future work with tissue correlative studies using post-injection specimens are underway